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MAURER Vibration Isolation

Vibration Isolation

Vibrations due to kinematic and force excitations

Undesirable and inacceptable vibrations in buildings and
rooms with sensitive equipment such as microscopes,
lasers and other vibration sensitive devices are caused by
the following two ways of excitations (Fig. 1, left):

= Kinematic excitation: ground vibrations with
displacement x,, (t) due to traffic, earthquake, wind,

explosions and other loadings excite the sensitive
equipment.

= Force excitation: inertial forces f,,(t) of rotating
machines excite floors and thereby entire buildings.

Assuming very stiff bearings or even the absence of
bearings between ground and sensitive equipment and
between rotating machine and floor/building, respectively,
the disturbing vibrations and forces, respectively, are
transmitted to the sensitive equipment and floor/building
almost without any attenuation. The resulting vibrations
x(t) =x,, (t) and forces f(t)=f,(t) are not acceptable and

may lead to premature material fatigue.

Different kinds of excitations exist (Fig. 2). Rotating
machines often do not generate harmonic but periodic
forces. Punching machines lead to impulse-type force
excitation. Wind (no vortex shedding) and earthquakes lead
to broad band excitations.

without vibration isolation

ground excitation:
floor/ground vibrations inertial forces of rotating
excite sensitive equipment; machines excite floor;
x(t)=xg,{t) for very stiff bearings  f(t)=f,,(t) for very stiff bearings

force excitation:

X=Xay fox
very stiff

=~ T

bearings

Txex lf: fox

Fig. 1 — Vibrations in sensitive equipment and structures without (left) and with (right) vibration isolation
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Vibration isolation system

The vibration isolation targets to minimize the
transmissibility of displacement in case of ground
excitation by so-called “passive” isolation and the
transmissibility of force in case of machine induced
vibrations by “active” isolation (Fig. 1, right). Both isolation
systems are identical and consist of a spring packet in

parallel to a dash pot damper.
Single degree-of-freedom system

Equation of motion

The dynamics of the isolated structure are conveniently
analysed by the model of the single degree-of-freedom
system (Fig. 1, right). Its equations of motion for force (1)
and kinematic (2) excitations become

mMX +CX+Kg, X =foy (1)

MX+€ (X=X gy J+K gy (X=X )=0 (2)

with:

= m: mass of system to be isolated in case of ground
excitation and the mass of machine (without accelerated
machine parts) in case of force excitation,

= ¢ :viscous damper coefficient of oil damper,

= Ky, : dynamic spring stiffness of spring packet.

with vibration isolation
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Fig. 2 — Harmonic (a), periodic (b), impuls-type (c) and broad band (d) excitations
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MAURER Vibration Isolation

Natural frequency

The natural, i.e. undamped frequency in Hertz of the single
degree-of-freedom oscillator is

1 kd n
f=— " 3
° 2z m )
where the dynamic stiffness kg, describes the stiffness of

the spring element under dynamic loading. For spiral steel
springs kg, is identical to the static stiffness k while kg,

represents a linearized value for elastomer springs. In
practice kg, is usually given in N/mm which leads to the

following approximation

b (g Y1000 [kanOV/mml (g, W/l
oTET T T mbgl T\ mikgl

Static spring deflection

The static deflection of the spring due to the load of mass
m is (g : gravitational acceleration)

_Em__ 8

Ah k ianoi

(5)

which shows that Ah can be expressed as function of the
natural frequency only (Fig. 3). For Ah in mm and f, in

Hertz the following approximation is commonly used

250

Ah[mm] =~ fg [l

(6)
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Fig. 3 — Relation between static steel spring deflection and

natural frequency of isolation system
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Damping ratio

The damping ratio ¢ of the oscillator is given by the

viscous damper coefficient ¢ of the oil damper

c ¢ c2nfy)

= = = (7)
6 2 fkyym 2m(2nfy) 2y,

The expression (7) assumes linear viscous damping of the
passive oil damper which is fulfilled for silicon oil based
dash pot dampers.

Free decay response

The free decay response of the damped single degree-of-
freedom oscillator is characterized by a harmonic oscillation
at damped frequency f; and an exponential function

describing the decay of the peaks X (Fig. 4)

x(t) =X, e-(G2nht) cos(2xf,t) (8)
f, = 1-¢2 =1/T, (9)

For oscillators with linear damping the ratio of subsequent
peaks during the free decay response yields the logarithmic
decrement

5= In( X, J (10)
Xn+1
from which the damping ratio can be derived as follows
-2 (1)

1/lmz+82

The approximation {~&/2/x is valid for small § (<10%).

Xq/X{t=0)

decay envelope -
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|
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time (s)

Fig. &4 — Free decay response of a single degree-of-freedom
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Forced excitation

If the single degree-of-freedom oscillator is excited by the
base displacement or the machine-induced force the single
degree-of-freedom system vibrates at the frequency of
excitation f,, . If the excitation frequency equals the natural

frequency, ie. f,, =f,, resonant vibration with extremely

large amplitudes occur whose magnitude depends on the
damping ratio only.

Amplification function
The displacement amplification of a single degree-of-
freedom system with force excitation is expressed by the
displacement amplitude divided by the static deflection of
the single degree-of-freedom system due to the excitation
force amplitude (Fig. 5)

|x|_X_ 1

= = (12)
|fex/kdvn | Xstatic (1_}\'2)2 +(2C x)z
where A denotes the frequency ratio
A= fou (13)
fO
6 . :
e £ %
¢=10%
5¢ —— §=20% |1
—— ¢=30%
Al ——== §=40%) |

0% 05 1 15 2 25 3 35 & 45

A=fy/fp

Fig. 5 — Amplification function for different damping ratios ¢
of single degree-of-freedom system
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Transfer function

The impact of the machine forces on the forces acting on
the structure is expressed by the absolute transfer function
|| between transmitted force and excitation force (Fig. 6)

|otf = (14)

F
ex FEX
and becomes for harmonic excitation and very small
flexibility, i.e. for infinitely high impedance of the floor

2
= 1+(2¢1) (15)

(1-22 +@cy
The transfer function for kinematic excitation, i.e. base
excitation, for small base vibration amplitudes takes the
same form as (15) (Fig. 6)

2
_ X | 1+(cn) (16)

Xex (1—)\.2)2 +(¢0)?

For small damping ratios (< 5%) the transfer function |oc|

X
=2

Xex

only depends on the frequency ratio A

1 0)
lod s ~T g (E<5%) (17)
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Fig. 6 — Transfer function |a| for different damping ratios ¢

of isolation system
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Transmissibility

The force transmissibility for force excitation and the
displacement transmissibility for base excitation are
defined by |a in decibel (dB)

lo 5 =2010g 1 (o) (18)

Some typical values of |a| and |G.|dB are given in Table 1.

Table 1 - Typical values of |« and |or|

o/ [001 01 05 1 2 10 100

le | -40 -20 -6 0 6 20 40

The transmissibility function |af,, (Fig. 7) for different

damping ratios ¢ of the isolation system shows the

following characteristics:

= Amplification, f,, <+/2 f,: Transmitted amplitudes are
larger than those of excitation, are larger than without
isolation system and can only be limited by the damping
of the isolation system.

= Attenuation, f, > ﬁfo : Transmitted amplitudes are

smaller than those of excitation. Notice that the isolation
system reduces the amplitudes but cannot cancel the
vibrations of the isolated structure.

= Same phase and amplitude, f,, <(0.2-0.3)f,: The

transmitted amplitudes are approx. equal to and approx.
in phase with those of excitation.

= Good isolation, A =f,, /f, >3: Good isolation is
achieved if the isolation frequency fj, is at least 3 times
lower than the lowest excitation frequency f,, .

40 T
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B < [(F/Fe=0
c 55 ~
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Fig. 7 - Transmissibility |a|,, for different damping ratios ¢

of isolation system

TI005 EN /2017-06

"/\\ MAURER

Trade-off behaviour of damping
High values of { reduce resonant amplitudes but lower

the attenuation in the frequency range A > V2 ,ie. lowera
good roll-off behaviour; the opposite effect is observed for
small values of ¢ . Thus, the optimal design of £ strongly
depends on the specifications of each project.

Displacement amplification

Due to the isolation system vibration amplitudes of
elastically supported machine with inertial excitation are
amplified. This is expressed by the amplification function

X A2
1B = =
Fex (1—7\.2)2 +(2(;)\.)2
m (27 foy)?

which is defined as the ratio between the displacement
amplitude of the machine and the displacement of the
machine without isolation system due to the excitation
force.

(19)

The maximum steady state displacements of the machine
occur at resonant excitation (A =1, Fig. 8). Therefore, the
rotational speed of the machine should be changed fast
during starting and stopping processes when the rotational
frequency is in the vicinity of f, as transient amplitudes are

smaller than their steady state values.

In the region of good isolation (A>3,[f|~1) the
displacement amplitude of the machine does hardly depend
on § butis in proportion to the excitation force amplitude.
Within this frequency range (A =3 ) and for small damping
ratio (£ < 5%) |B| may be approximated as follows

}\’2
|B|c<5% ~ 21 (£ <5%) (20)

............ C=1%
¢=10%
— {=20%|]
— £=30%
———- £=40%||

displacement amplification |B] (-)

A=fg /o (-)

Fig. 8 — Displacement of vibrating machine for different
damping ratios ¢ of isolation system
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MAURER Vibration Isolation

Isolation efficiency

The isolation efficiency i is defined in % for the region of
attenuation (A >+/2 ) only (Fig. 9)

i[%] = (1-|of)-100 (21)
which can be approximated for small damping (£ < 5%)
. -2
ic<sy [%]z(ﬁj-mo (& <5%) (22)

Expression (22) can be solved for the frequency ratio A and
thereby for the natural frequency f,

- ~f 100 —i

23
Y 200—i (23)

(G<5%)

Putting the required isolation efficiency i, into (23) yields
the required natural frequency

100 —ieq (C<5%)

T (24)
* | 200 i

fO,req =Tl

The closed-form solution (24) may be used to calculate

foreq that ensures i, whose recommended value is
ireq = 80%..90% (25)
Assuming i, =80% in (24) leads to fy . = fe, /2.45. Even

fairly small damping of 20%, which may not be sufficient for
the mitigation of resonant vibrations, f, ., = fe /2.45 and

¢ =20% (point a in Fig. 9) lead to i~ 73% whereby i, =80%

req
is not fulfilled. This example clearly demonstrates that the
optimum design of f, and { requires computing the
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general formulation (21) of the isolation efficiency.
Assuming ¢ =30%, which generates sufficient mitigation of

resonant vibrations, leads to f, ~f, /3.5 and ensures
izireq (point b in Fig. 9). Thus, the isolation efficiency
allows deriving the optimum design of the isolation
system according to Client’s specifications.

Design by MAURER

MAURER offers the optimal design of the vibration isolation
system according to Client's specifications. The optimal
design consists of the following steps:

1. Client's information:

- required isolation efficiency i,

- lowest excitation frequency f.owest
- vertical loads
- design for traffic induced base excitation only or
also for earthquake induced vibrations
2. Select the lowest frequency ratio A/®¥est = flowest /§

based on the recommendation A'®"¢*t=25...3.

3. Compute f, based on A" and flovest,

4, Compute i for At and various damping ratios

and select this damping ratio that fulfils i > .

Steps 2 to 4 require several iterations to find the best

solution that guarantees i>i,, and sufficient mitigation of

resonant amplitudes at A =1.

100 . . , , , ‘ ' '
S0 :
80
=
— 70
o}
g o
S i
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S :
= 40 — i J
© < .
© o !
2 301 = - t=1% |-
S - £=10%
o1 e : —— =20%
10} : — ¢=30%|]
L | geson
1 1 L L { ! -
0 0 0.5 1 1.5 2 25 3 3.5 4 45
A=fo /o ()

Fig. 9 — Isolation efficiency for different damping ratios ¢ of isolation system
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MAURER Vibration Isolation

Transfer function for flexible structures

The impedance of the structure Z, must be considered for

the computation of the transfer function |o if (Fig. 10, left):

= the flexibility of the floor structure cannot be neglected,
i.e. Z, cannot be assumed to be infinitely high, and

= the modal mass m, of the floor structure is less than 10

times the mass m, of the machine.

For the derivation of the transfer function |a| in its general

format the model of the single degree-of-freedom system
(Fig. 1, right) must be replaced by a two degree-of-freedom
system describing the dynamics of the elastically supported
machine mass and of the flexible structure (Fig. 10, right).
The impedance of the machine

z,=j(2nf,)m, (26)

(j:imaginary unit) and the impedance of the floor structure

k
Z,=j@2nf,)m,+c, +——2 27
2 l("‘ ex) 2+C iGrf, (27)
yield the complex tansfer function o
1428, A
o= }\’2 JC1 1 (28)
1—— = 426, A
1+(2,/2,) G
which eventually gives the absolute transfer function
1+(2¢,2,)
|a|_ _ ’ ( C1 1) (29)

A?% +B?

-

2Aa )’ 2B )
1} +(2c1x1+21J

"/\\ MAURER

with
A% -1
+ 2 2!
(1-23)+(2¢6,2,)
where A, =f, /f,; and A, =f,, /f,,.

206,05
T (1=A2)+(28,4,)?

(30)

Vibration mitigation of piping systems

Piping systems in power stations may be excited by
machines through the floor structure and the supports of
the piping system (Fig. 11). Due to the high flexibility and
low damping of pipes the resulting vibration amplitudes
may be inacceptable large. Viscous dampers are installed
between pipe and additional damper supports to dissipate
energy whereby the piping system damping is augmented
and consequently oscillation amlitudes are reduced. The
following issues must be considered:

= Damper supports are required in order to attach the
viscous dampers at the position of maximum kinetic
energy of vibration, i.e. at anti-node position of the
relevant mode, for maximum vibration mitigation.

= High damper support stiffness is required for high
damping efficiency.

= The viscous damper coefficient ¢ must be optimized to
the frequency of the predominantly vibrating mode.

= The selection of the silicon oil must take into account
operating temperature of the damper.

= Higher vibration modes require the installation of several
smaller viscous dampers.

A% +B?
fex
mq
machine l,
/damper ¢ of ke L|—| N
isolation system m,
flexible structure, index 2 J
(kykq) flexible structure X2
A 2> "2% e
7 7

L fefy

Fig. 10 — Isolation of machine induced vibrations on flexible structures

£ pipe
viscous damper .
existing piping at anti-node I I
system support
stiff damper support |

vertical vibrations

horizontal
vibrations

g

18]

S S S

Fig. 11 — Reduction of spatial pipe vibrations by transverse viscous dampers
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Vibration Isolation in Seismic Zones

Building vibrations due to earthquake excitation

For the vibration isolation of sensitive equipment / sensitive
structures in buildings that are located in seismic zones
vibration isolation becomes a demanding task because of

the following facts (Fig. 12):

= Mainly horizontal vibrations: earthquakes excite
buildings predominantly in horizontal direction.

= Large horizontal displacements: compared to typical
vertical vibration amplitudes of isolation systems on the
order of micro-meters the relative motion in the curved
surface sliders in horizontal direction can be up to 0.5 m.

= Low frequency excitation: most earthquakes show their
highest energy content within 0.5 Hz to 2 Hz which is
below the frequency range of most isolation systems.

building vibrates in all
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Solution by MAURER

MAURER as a leading specialist for earthquake protection
systems provides taylor-made solutions to optimally
combine the vibration isolation system with the technology
of earthquake protection. Solutions include (Fig. 12):

= Optimal design of earthquake protection and vibration
isolation systems by dynamic non-linear simulation for
accelerograms being equivalent to the specified elastic
response spectrum.

= Curved surface sliders embedded within elastomer pads.

Curved surface sliders allow for horizontal movement of the
building relative to the shaking ground and thereby
decouple the structure (step a in Figs. 13, 14). The energy
dissipation by friction on the sliding surfaces augments the
damping of the building which additionally reduces the
acceleration response of the building (step b in Figs. 13, 14).

sensitive equipment /
sensitive structure

\

; ! ; ; :!/ ; curved surface slider
ground acceleration in all
spatial dimensions (earthquake)

Fig. 12 — Possible solution for vibration isolation in seismic zones
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Fig. 13 — Reduction of horizontal building accelerations by
curved surface sliders in the elastic response spectrum as

function of time period
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Fig. 14 — Reduction of horizontal building accelerations by
curved surface sliders in the elastic response spectrum as
function of frequency
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Design Considerations

Fundament plate

An additional stiff fundament plate between machine and
isolation system must be included if the steel frame of the
machine is not stiff enough to ensure that all spring
elements of the isolation system are working in phase. The
mass of the additional fundament plate also helps to reduce
the relative diplacement amplification || of the machine
because the mass m of the single degree-of-freedom
system is augmented by the mass of the fundament plate
whereby the term F,, /(m(2xf,, )?) in (19)is reduced.

Force and moment equilibria

Typically, the machine with fundament plate is elastically
supported by an even number of spring packets. To
guarantee vertical operation of the isolation system without
any bending the vertical load on all spring packets must be
equal

>(F)=mg (31)

and the positions of the spring packets must ensure zero
resulting moment in both horizontal directions x and y

2(Fx)=0,2Fv:)=0 (32)

i
For the example depicted in Fig. 15 with elastic supports in
the four corners (1, 1", 3, 3') and given centre of mass x,
equation (32) leads to

X, =3X, —X; (33)

Steel spiral springs
Basically three types of spring elements exist:

= Elastomer pads that generate coupled non-linear
stiffness and approx. linear damping behaviours; used
for rather high isolation frequencies f, > 6 Hz.

machine
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= steel spiral springs that are characterized by linear
stiffness behaviour, i.e. kdvn =k, very small (linear)

damping on the order of 0.3% to 0.5%; adopted for
medium isolation frequencies 2 Hz< f, < 10 Hz.

= air springs that are used when lowest isolation
frequencies are required ( f, > 0.5 Hz).

Vibration isolation systems based on steel spiral springs

generate optimum isolation due to the following benefits of

steel spriral springs:

= linear stiffness behaviour whereby the isolation
frequency does not depend on the relative motion
amplitude of the isolation system,

= very small and linear damping ratio whereby the
required damping ratio of the vibration isolation system
can be generated by an optimally tuned linear dash pot
damper,

= accurate design is possible, and

= plastic deformation hardly occurs.

Linear viscous damper

Except for elastomeric bearings the required damping of the

isolation system must be produced by a dash pot damper.

The following issues must be addressed:

= the dash pot damper must be designed to dissipate
energy in all three spatial dimensions,

= the actual viscous damper coefficient must be equal to
its design value c (7) at operating temperature of the
damper, and

= the damper support must be stiff.

fundament
plate

3
ral

Fig. 15 — Positions of spring packets (example)
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